US 20210008461A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2021/0008461 A1

Anderegg et al.

43) Pub. Date: Jan. 14, 2021

(54) VIRTUAL PUPPETEERING USING A GO6T 13/40 (2006.01)
PORTABLE DEVICE GO6T 13/80 (2006.01)
(52) US. CL
(71) Applicants: Disney Enterprises, Inc., Burbank, CA CPC oo, A63H 3/36 (2013.01); A63J 19/006
(US); ETH Zurich, Zurich (CH) (2013.01); GO6T 2200/24 (2013.01); GO6T
. 13/80 (2013.01); GO6T 13/40 (2013.01)
(72) Inventors: Raphael Anderegg, Zurich (CH); Loic
Ciccone, Zurich (CH); Robert W. (57) ABSTRACT
Sumner, Zurich (CH)
A virtual puppeteering system includes a portable device
(73) Assignees: DISNEY ENTERPRISES INC.; ETH including a camera, a display, a hardware processor, and a
Zurich system memory storing an object animation software code.
The hardware processor is configured to execute the object
(21) Appl. No.: 16/917,467 animation software code to, using the camera, generate an
(22) Filed: Jun. 30, 2020 gpage in response to r.eceiVing an actix{ation input, .usin.g the
isplay, display the image, and receive a selection input
Related U.S. Application Data selecting an object shown in the image. The. hardware
processor is further configured to execute the object anima-
(60) Provisional application No. 62/873,021, filed on Jul. tion software code to determine a distance separating the
11, 2019. selected object from the portable device, receive an anima-
A . . tion input, identify, based on the selected object and the
Publication Classification received animation input, a movement for animating the
(51) Int. CL selected object, generate an animation of the selected object
AG63H 3/36 (2006.01) using the determined distance and the identified movement,
A63J 19/00 (2006.01) and render the animation of the selected object.
e i
125 1008
120 a e

130

Real-World Environment 101

Patent Application Publication Jan. 14, 2021 Sheet 1 of 9 US 2021/0008461 A1

122

Real-World Environment 101

s

120

Patent Application Publication Jan. 14, 2021 Sheet 2 of 9 US 2021/0008461 A1

Real-World Environment 101

Patent Application Publication Jan. 14, 2021 Sheet 3 of 9 US 2021/0008461 A1

Real-World Environment 101

120"

Patent Application Publication Jan. 14, 2021 Sheet 4 of 9 US 2021/0008461 A1

Fag 2 200
4

238

- 228

N

Transce%ver
Portable Device 21 202

Display Screen

214 1 Hardware Processor

Memory 216

Virtual Environment Database 234

N Object Animation
"""" ®1 Software Code 212

-

Motion

3
L

204

Patent Application Publication Jan. 14, 2021 Sheet 5 of 9 US 2021/0008461 A1

Using a camera of a portable device, 340

generate an image in response 1o receiving

an activation input - 341
Displaying the image on a display screen of
the portable device 347
Receiving a selection input selecting an
object in the image ~ 343

Determining the distance separating the
selected object from the poriable device

344

Optionally: Recelving another selection input
selecting a virtual environment for an
animation of the selected object

mnnmng

Receiving an animation input .
............ 246

identifying, based on the selected object, the |

received animation input, and optionally the

selected virtual environment, a movement fo
animating the selected object

- 347

Generating an animation of the selected
object using the determined distance, the
identified movement, and optionally the
selected virtual environment 348

Rendering the animation of the
selectad object

Patent Application Publication Jan. 14, 2021 Sheet 6 of 9 US 2021/0008461 A1

458

m.
e
£
O 5 =
L
-y
& B
e
o o I+
wH :
Y?-

blend parameter (velocity}

{1ubisy yonoun) Jepueied pusig

US 2021/0008461 A1

Jan. 14,2021 Sheet 7 of 9

Patent Application Publication

[s/w} {(Aunopa) Inddu esn
5 ¥ £ z

! : ¥ }

oy

FETR RS
IEPIOG WO
sy sonaE w

SO LOILBWIME 4

00g

vg—
PSS 8.

/
o sarons X

HOREM KR

B OHE M MM

nciug Jesn

Patent Application Publication Jan. 14, 2021 Sheet 8 of 9 US 2021/0008461 A1

632

US 2021/0008461 A1

Jan. 14,2021 Sheet 9 of 9

A%

Patent Application Publication

US 2021/0008461 Al

VIRTUAL PUPPETEERING USING A
PORTABLE DEVICE

RELATED APPLICATION(S)

[0001] The present application claims the benefit of and
priority to a pending U.S. Provisional Patent Application
Ser. No. 62/873,021, filed Jul. 11, 2019, and titled “Puppe-
teering Virtual Characters Using a Portable Device,” which
is hereby incorporated fully by reference into the present
application.

BACKGROUND

[0002] When playing with a traditional toy, such as a doll
or an action figure, for example, a core play pattern is to
grasp the toy and move it around. While doing this, children
imagine the character represented by the toy to be walking
around in a room, interacting with objects, and even par-
ticipating in stories or engaging in quests. A physical doll,
however, being inanimate, merely follows the child’s ges-
tures in an inert and non-interactive way.

[0003] In video games, by contrast, virtual characters can
move in exciting, apparently interactive ways. However, that
appearance of interaction is indirect due to the lack of
physical engagement with the virtual characters. Moreover,
because children typically control virtual characters using
buttons on a controller or moving a joystick, the direct
one-to-one interaction with a traditional toy is unfortunately
lost. For instance, even sophisticated video games that use
motion tracking do not provide a one-to-one interaction, but
rather tend to use the tracking as a means of controlling the
virtual character.

SUMMARY

[0004] There are provided systems and methods for per-
forming virtual puppeteering using a portable device, sub-
stantially as shown in and/or described in connection with at
least one of the figures, and as set forth more completely in
the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1A shows a diagram of an exemplary virtual
puppeteering system, according to one implementation;
[0006] FIG. 1B shows a diagram of an exemplary virtual
puppeteering system, according to another implementation;
[0007] FIG. 1C shows a diagram of an exemplary virtual
puppeteering system, according to yet another implementa-
tion;

[0008] FIG. 2 shows a diagram including a more detailed
exemplary representation of a portable device of the virtual
puppeteering systems shown in FIGS. 1A, 1B, and 1C,
according to one implementation;

[0009] FIG. 3 is a flowchart presenting an exemplary
method for use by a virtual puppeteering system, according
to one implementation;

[0010] FIG. 4 shows an exemplary blend-space graph for
use by a virtual puppeteering system to identify a movement
for animating an object, according to one implementation;
[0011] FIG. 5 shows an exemplary lookup table for use by
a virtual puppeteering system to identify a movement for
animating an object, according to one implementation;
[0012] FIG. 6A shows an exemplary animation generated
by a virtual puppeteering system, according to one imple-
mentation; and

Jan. 14, 2021

[0013] FIG. 6B shows additional actions performed in the
animation initiated in FIG. 6A, according to one implemen-
tation.

DETAILED DESCRIPTION

[0014] The following description contains specific infor-
mation pertaining to implementations in the present disclo-
sure. One skilled in the art will recognize that the present
disclosure may be implemented in a manner different from
that specifically discussed herein. The drawings in the
present application and their accompanying detailed
description are directed to merely exemplary implementa-
tions. Unless noted otherwise, like or corresponding ele-
ments among the figures may be indicated by like or
corresponding reference numerals. Moreover, the drawings
and illustrations in the present application are generally not
to scale, and are not intended to correspond to actual relative
dimensions.

[0015] As noted above, when playing with a traditional
toy, such as a doll or an action figure, for example, a core
play pattern is to grasp the toy and move it around, while
imagining that the character represented by the toy is
walking around in a room, interacting with objects, and even
participating in stories or engaging in quests. Nevertheless,
a physical doll, being inanimate, merely follows the child’s
gestures in an inert and non-interactive way. As also noted
above, although virtual characters (e.g., video game char-
acters) can move in exciting, apparently interactive ways,
that appearance of interaction is indirect. Moreover, because
children typically control virtual characters using buttons on
a controller or moving a joystick, the direct one-to-one
physical interaction with a traditional toy is unfortunately
lost. Even sophisticated video games that use motion track-
ing do not provide a one-to-one interaction, but rather tend
to use the tracking as a means of controlling the virtual
character.

[0016] The present application discloses virtual puppe-
teering systems and methods that overcome the drawbacks
and deficiencies in the conventional art. The present disclo-
sure introduces a novel interaction that brings the traditional
experience of holding and manipulating a doll to the digital
world, allowing children to virtually hold and move virtual
characters that depict real-world physical toys or other
physical objects. The present disclosure combines advan-
tages of both real and virtual worlds by providing a tangible
motion interface, similar to the manipulation of physical
toys, while augmenting the virtual character’s movement
with animations similar to those of a video game character.

[0017] FIG. 1A shows a diagram of exemplary virtual
puppeteering system 100A, according to one implementa-
tion. As shown in FIG. 1A virtual puppeteering system 100A
includes portable device 110 having display screen 118,
which, in some implementations, may be a touchscreen, for
example. As further shown in FIG. 1A, virtual puppeteering
system 100A is implemented within real-world environment
101 including one or more real-world objects or structures,
represented in FIG. 1A by object 122 in the form of an
exemplary toy (e.g., doll, figurine, or action figure) sepa-
rated from portable device 110 by distance 124. Also shown
in FIG. 1A is user 120 of portable device 110, who may be
a child or an adult utilizing portable device 110 to animate
a virtual character depicting object 122, and to interact with
the animation.

US 2021/0008461 Al

[0018] According to the exemplary implementation shown
in FIG. 1A, portable device 110 may be a handheld device,
such as a smartphone or tablet computer, for example.
Alternatively, portable device 110 may take the form of a
digital media player, a game console, a laptop computer, or
a wearable device, such as a smartwatch, for example.
According to the exemplary implementation shown in FIG.
1A, portable device 110 is configured to render animation
132 of object 122 on display screen 118 of portable device
110. In various implementations, display screen 118 of
portable device 110 may be a liquid crystal display (LCD),
a light-emitting diode (LED) display, an organic light-
emitting diode (OLED) display, or a display screen imple-
mented using any other suitable display technology that
performs a physical transformation of signals to light.

[0019] In some implementations, real-world environment
101 may take the form of an indoor venue. Such indoor
venues may include a personal residence, a school, or a film
or broadcast studio, to name a few examples. Alternatively,
in some implementations, real-world environment 101 may
be an outdoor environment. Examples of an outdoor envi-
ronment may include a residential yard, a playground, or a
park, such as a theme park, to name a few. It is noted that
although FIG. 1A explicitly shows real-world environment
101 to include only object 122, that simplified representation
is provided merely for conceptual clarity. More generally,
real-world environment 101 may include multiple struc-
tures, such as walls, a ceiling, a floor, and one or more
objects other than object 122, such as articles of furniture
and art or decorative objects to name a few examples.

[0020] FIG. 1B shows a diagram of exemplary virtual
puppeteering system 100B, according to another implemen-
tation. It is noted that virtual puppeteering system 100B, in
FIG. 1B, corresponds in general to virtual puppeteering
system 100A, in FIG. 1A, and may share any of the
characteristics attributed to that corresponding system by the
present disclosure. It is further noted that any feature in FIG.
1B identified by a reference number identical to a reference
number appearing in FIG. 1A corresponds to that previously
described feature and may share any of the characteristics
attributed to it above.

[0021] According to the exemplary implementation shown
in FIG. 1B, and in contrast to the implementation shown in
FIG. 1A, virtual puppeteering system 100B includes pro-
jection device 126 communicatively coupled to portable
device 110 by communication link 128, which may be a
wired or wireless communication link. As further shown in
FIG. 1B, according to the present exemplary implementa-
tion, portable device 110 is configured to control projection
device 126 to render animation 132 of object 122 by
projecting animation 132 onto real-world surface 130 in
real-world environment 101.

[0022] It is noted that although FIG. 1B depicts surface
130 as a wall surface in real-world environment 101, that
representation is merely exemplary. In other implementa-
tions in which real-world environment 101 is an indoor
venue, surface 130 may be a furniture surface (e.g., tabletop
or desktop surface), a floor surface, a ceiling surface, or any
other suitable surface in real-world environment 101 for
rendering animation 132 of object 122. In implementations
in which real-world environment 101 is an outdoor envi-
ronment, surface 130 may be a projection screen, a picnic
tabletop, or a benchtop, to name a few examples.

Jan. 14, 2021

[0023] Projection device 126 may include one or more
projectors, such as a stand-alone wide-field projection sys-
tem, a fisheye lens projector, or multiple stitched projection-
mapped video projectors. In some implementations, projec-
tion device 126 may be configured to render animation 132
of object 122 as a two-dimensional (2D) animation. How-
ever, in other implementations, projection device 126 may
be configured to render animation 132 as a three-dimen-
sional (3D) animation. For example, projection device 126
may take the form of a 3D projection system, or a 2D display
configured to spin so as to generate an apparently 3D image.
[0024] FIG. 1C shows a diagram of exemplary virtual
puppeteering system 100C, according to yet another imple-
mentation. It is noted that virtual puppeteering system 100C,
in FIG. 1C, corresponds in general to virtual puppeteering
systems 100A and 100B, in respective FIGS. 1A and 1B, and
may share any of the characteristics attributed to those
corresponding systems by the present disclosure. It is further
noted that any feature in FIG. 1C identified by a reference
number identical to a reference number appearing in FIG.
1A or FIG. 1B corresponds to that previously described
feature and may share any of the characteristics attributed to
it above.

[0025] According to the exemplary implementation shown
in FIG. 1C, and in contrast to the implementations shown in
FIGS. 1A and 1B, virtual puppeteering system 100C
includes virtual reality (VR) viewer 138 communicatively
coupled to portable device 110 by communication link 128,
which, as noted above, may be a wired or wireless commu-
nication link. As further shown in FIG. 1C, according to the
present exemplary implementation, VR viewer 138 is con-
figured to be worn by user 120, and portable device 110 is
configured to control VR viewer 138 to render animation
132 of object 122 on VR viewer 138. That is to say, in some
implementations, VR viewer 138 may provide display
screen 118, portable device 110 may be a handheld device
serving as a controller for VR viewer 138, and sensors
installed in real-world environment 101 may serve as a
tracking system (sensors not shown in FIG. 1C). In those
implementations no camera is required because objects in
real-world environment 101 are tracked by the sensors and
the entire interaction experienced by user 120 occurs within
a virtual environment. It is noted that, in various implemen-
tations, VR viewer may take the form of a VR headset, VR
goggles, or VR glasses, for example.

[0026] It is further noted that although FIG. 1C depicts
portable device 110 and VR viewer 138 as being commu-
nicatively coupled but discrete components of virtual pup-
peteering system 100C, that implementation is merely
exemplary. In other implementations portable device 110
and VR viewer 138 may be integrated into a single unit such
that portable device 110 is VR viewer 138.

[0027] By way of overview, and with reference to FIGS.
1A, 1B, and 1C, in some implementations, as shown in FIG.
1A, exemplary virtual puppeteering system 100A uses aug-
mented reality (AR) to render animation 132 of object 122
on display screen 118 of portable device 110. In other
implementations, as shown in FIG. 1B, portable device 110
may be used in conjunction with projection device 126 to
use AR to render animation 132 of object 122 on surface 130
in real-world environment 101. In yet other implementa-
tions, as shown in FIG. 1C, portable device 110 may be used
in conjunction with VR viewer 138 to render animation 132
on VR viewer 138. For instance, in various implementations,

US 2021/0008461 Al

user 120 may use a camera of portable device 110 and see
a virtual character corresponding to object 122 standing on
a table or any other surface through AR or VR. User 120 can
then provide an input to portable device 110 to select the
virtual character and may provide one or more animation
inputs to portable device 110 to generate animation 132 of
the virtual character. In implementations in which display
screen 118 of portable device 110 is a touchscreen, for
example, user 120 can virtually grasp the virtual character
by pressing on the image of the virtual character shown on
display screen 118.

[0028] According to one implementation, once grasped,
the virtual character corresponding to object 122 can move
in response to the physical movement of portable device 110
as if the virtual character were connected to portable device
110 by a rigid rod of length equal to distance 124. However,
unlike real-world object 122, the virtual character corre-
sponding to object 122 may be enhanced with animation
effects simulating walking, running, jumping, crouching, or
even playful interactions, such as building a snowman, for
example, to generate animation 132 of object 122. In some
implementations, animation 132 is generated by recognizing
the gestures user 120 makes as he or she moves portable
device 110. It is noted that, as described below by reference
to FIGS. 6A and 6B, although in some implementations an
object animated using the present virtual puppeteering sys-
tems and methods may be a real-world object, such as object
122, in other implementations, the object may be a virtual
object.

[0029] It is further noted that although distance 124 is
shown to be a distance corresponding to a spatial separation
of object 122 from portable device 110, in some implemen-
tations, distance 124 may have zero length. When distance
124 is approximately zero, the experience for user 120 is one
of having the virtual character corresponding to object 122
in their hand, in place of portable device 110. That use case
may be particularly immersive in the case of VR because
user 120 would see a moving and reacting virtual character
instead of portable device 110 when portable device 110 is
a handheld device.

[0030] Each of virtual puppeteering systems 100A, 1008,
and 100C advantageously provide a novel interaction expe-
rience motivated by the traditional experience of moving a
physical toy or other physical object. In some implementa-
tions, as portable device 110 is moved in physical space, that
movement can be transferred directly and immediately to the
virtual character shown in animation 132. Since the virtual
character can either be visualized in real-world environment
101 using AR or visualized substantially entirely in a virtual
world using VR viewer 138, the experience is one of having
direct control over the virtual character corresponding to
object 122. However, because the character is a virtual
character, the present virtual puppeteering solution can
advantageously apply sophisticated animations and other
logic to enhance a user’s enjoyment and perception of
interactivity with object 122.

[0031] FIG. 2 shows diagram 200 providing a more
detailed representation of exemplary portable device 210. As
shown in FIG. 2, portable device 210 may be communica-
tively coupled to either of projection device 226 or VR
viewer 238 by communication link 228.

[0032] Portable device 210 corresponds in general to
portable device 110 in FIGS. 1A, 1B, and 1C, and those
corresponding features may share any of the characteristics

Jan. 14, 2021

attributed to either of the corresponding features by the
present disclosure. In addition, projection device 226. VR
viewer 238, and communication link 228 correspond respec-
tively in general to projection device 126, VR viewer 138,
and communication link 128, in FIGS. 1B and 1C. Thus,
projection device 226, VR viewer 238, and communication
link 228 may share any of the characteristics attributed to
respective projection device 126. VR viewer 138, and com-
munication link 128 by the present disclosure, and vice
versa.

[0033] As shown in FIG. 2, portable device 210 includes
hardware processor 214 and memory 216 implemented as a
non-transitory storage device. As further shown in FIG. 2,
memory 216 contains object animation software code 212
and may optionally include virtual environment database
234 storing multiple virtual environments represented by
exemplary virtual environments 236a and 2365. In addition,
and as also shown by FIG. 2, portable device 210 may
include any or all of transceiver 202, one or more motion
sensors 204 (hereinafter “motion sensor(s) 204”), one or
more cameras 206 (hereinafter “camera(s) 206”), and one or
more microphones 208 (hereinafter “microphone(s) 208”).
Also shown in FIG. 2 is image 231 generated by camera(s)
206, and animation 232 generated by object animation
software code 212 when executed by hardware processor
214. It is noted that animation 232 corresponds in general to
animation 132, in FIGS. 1A, 1B, and 1C, and those corre-
sponding features may share any of the characteristics
attributed to either corresponding feature by the present
disclosure.

[0034] Display screen 218 of portable device 210 corre-
sponds in general to display screen 118 of portable device
110, in FIGS. 1A, 1B, and 1C. Thus, display screen 218 may
share any of the characteristics attributed to display screen
118 by the present disclosure, and vice versa. As noted
above, portable device 210 corresponds in general to por-
table device 110, in FIGS. 1A, 1B, and 1C. Thus, although
not shown in FIGS. 1A, 1B, and 1C, like portable device
210, portable device 110 may include features correspond-
ing to hardware processor 214, transceiver 202, motion
sensor(s) 204, camera(s) 206, microphone(s) 208, and
memory 216 storing object animation software code 212.
[0035] Transceiver 202 may be implemented as commu-
nication hardware and software enabling portable device
110/210 to engage in wireless communication over a cellular
telephone network, and/or over a packet-switched network
such as the Internet. For example, transceiver 202 may be
implemented as a fourth generation of broadband cellular
technology (4G) wireless transceiver, or as a 5G wireless
transceiver configured to satisfy the IMT-2020 requirements
established by the International Telecommunication Union
(ITU). Alternatively, or in addition, transceiver 202 of
portable device 110/210 may be configured to communicate
via one or more of WiFi, Bluetooth, ZigBee, and 60 GHz
wireless communications methods.

[0036] Motion sensor(s) 204 may include one or more
accelerometers, and/or gyroscopes, and/or a GPS receiver,
and/or a magnetometer, for example. In some implementa-
tions, motion sensor(s) 204 may be implemented as an
inertial measurement unit (IMU), as known in the art.
[0037] Microphone(s) 208 may include any one or more
microphones suitable for use in receiving voice inputs by a
smartphone or tablet computer, for example. Camera(s) 206
may include one or more red-green-blue (RGB) still image

US 2021/0008461 Al

cameras and/or video cameras. In some implementations,
camera(s) 206 may correspond to an array of RGB still
image and/or video cameras configured to generate a pan-
oramic image. Moreover, in some implementations, camera
(s) 206 may include a light detection and ranging (LIDAR)
device.

[0038] As noted above by reference to FIG. 1C, in some
implementations, camera(s) 206 and display screen 118/218
may be omitted from portable device 110/210. In such
implementations, for example, VR viewer 138/238 may
provide display screen 118/218, portable device 110/210
may be a handheld device serving as a controller for VR
viewer 138/238, and sensors installed in real-world envi-
ronment 101 may be used as a tracking system. Conse-
quently, in those implementations camera(s) 206 is/are not
required because objects in real-world environment 101 are
tracked by the sensors and the entire interaction experienced
by user 120 occurs within a virtual environment.

[0039] According to the exemplary implementation shown
in FIG. 2, object animation software code 212 may be
persistently stored in memory 216 and may be executed
locally on portable device 110/210 by hardware processor
214. It is noted that, although the present application refers
to object animation software code 212 as being stored in
memory 216 for conceptual clarity, more generally, memory
216 may take the form of any computer-readable non-
transitory storage medium. The expression “computer-read-
able non-transitory storage medium,” as used in the present
application, refers to any medium, excluding a carrier wave
or other transitory signal that provides instructions to hard-
ware processor 214 of portable device 110/210. Thus, a
computer-readable non-transitory medium may correspond
to various types of media, such as volatile media and
non-volatile media, for example. Volatile media may include
dynamic memory, such as dynamic random access memory
(dynamic RAM), while non-volatile memory may include
optical, magnetic, or electrostatic storage devices. Common
forms of computer-readable non-transitory media include,
for example, optical discs, RAM, programmable read-only
memory (PROM), erasable PROM (EPROM), and FLASH
memory.

[0040] The functionality of object animation software
code 212 will be further described by reference to FIG. 3 in
combination with FIGS. 1A, 1B, 1C, and 2. FIG. 3 shows
flowchart 340 presenting an exemplary method for use by a
virtual puppeteering system. With respect to the method
outlined in FIG. 3, it is noted that certain details and features
have been left out of flowchart 340 in order not to obscure
the discussion of the inventive features in the present
application.

[0041] Referring to FIG. 3 in combination with FIGS. 1A,
1B. 1C and 2, flowchart 340 begins with using camera(s)
206 of portable device 110/210 to generate image 231 in
response to receiving an activation input (action 341). The
activation input to which action 341 is in response may be
one or more inputs from user 120 to portable device 110/210
that turn camera(s) 206 on and point camera(s) 206 toward
object 122. As a result, object 122 may be shown in image
231. By way of example, although a camera on a smartphone
or tablet computer does not typically take a picture until a
user presses a button to capture an image, merely turning on
the camera and pointing it toward an object will result in the
image of the object being displayed to the user through a
viewfinder of the camera interface.

Jan. 14, 2021

[0042] As noted above, the activation input to which
action 341 is in response may be one or more inputs from
user 120 that turn camera(s) 206 on and point camera(s) 206
toward object 122. Thus, such an activation input may
include a combination of different inputs from user 120,
such as a voice command to turn camera(s) 206 on, and
manual manipulation of portable device 110/210, or head
movement by user 120 when portable device 110/210 is
coupled to VR viewer 138 worn by user 120, to point
camera(s) 206 toward object 122. Generation of image 231
using camera(s) 206 in response to the activation input may
be performed by object animation software code 212,
executed by hardware processor 214.

[0043] Flowchart 340 continues with displaying image
231 on display screen 118/218 of portable device 110/210
(action 342). As noted above, in some implementations,
display screen 118/218 may be a touchscreen display in the
form of an LCD, LED display. OLED display, or a display
screen implemented using any other suitable display tech-
nology that performs a physical transformation of signals to
light. The display of image 231 on display screen 118/218
may be performed by object animation software code 212,
executed by hardware processor 214.

[0044] Flowchart 340 continues with receiving a selection
input selecting object 122 shown in image 231 (action 343).
The selection input received in action 343 may take a variety
of forms. In some implementations, for example, user 120
may utilize a selection tool shown on display screen 118/
218, such as selection box, bullseye, or other type of
indicator to select object 122 shown in image 231. In
implementations in which display screen 118/218 of por-
table device 110/210 is a touchscreen, the selection input
may include applying a touch or gesture to display screen
118/218. Examples of gestures may include swipes, such
swipe left, swipe right, swipe up, or swipe down, or double
taps, or a finger drag applied to display screen 118/218, to
name a few.

[0045] Alternatively, in some implementations, the selec-
tion input received in action 343 may be a voice input to
microphone(s) 208 that describes, names, or otherwise iden-
tifies object 122 in image 231. Action 343 may be performed
by object animation software code 212, executed by hard-
ware processor 214.

[0046] Flowchart 340 continues with determining distance
124 separating selected object 122 from portable device
110/210 (action 344). In some implementations, distance
124 may be determined through radio-signal triangulation
performed using transceiver 202. Alternatively, or in addi-
tion, in some implementations distance 124 may be deter-
mined using a LIDAR device included among camera(s)
206. As discussed below, in some implementations, distance
124 may be an important parameter when generating ani-
mation 132 of selected object 122. Determination of dis-
tance 124 in action 344 may be performed by object ani-
mation software code 212, executed by hardware processor
214.

[0047] In some implementations, flowchart 340 may con-
tinue with optionally receiving another selection input
selecting one of virtual environments 2364 or 2365 for an
animation of selected object 122 (action 345). By way of
example, virtual environment 236a may be a virtual field of
snow for an animation in which the virtual character corre-
sponding to selected object 122 builds a snowman. As

US 2021/0008461 Al

another example, virtual environment 2365 may be an
obstacle course or other activity venue for selected object
122.

[0048] It is noted that in implementations in which
optional action 345 is omitted, the virtual character corre-
sponding to object 122 may simply appear against the
portion of real-world environment 101 providing the back-
ground of image 231. That is to say, camera(s) 206 of
portable device 110/210 may be used to detect objects in the
real-world environment for the virtual character correspond-
ing to object 122 to interact with. Examples of such inter-
actions with real-world environment objects may include
scaling or jumping onto a real-world object, or virtually
digging into a wall or floor of the real-world environment.

[0049] The selection input received in optional action 345
may take a variety of forms. In some implementations, for
example, user 120 may select one of virtual environments
236a or 2365 from a list of virtual environments or thumb-
nails depicting those virtual environments, displayed on
display screen 118/218 of portable device 110/210. In imple-
mentations in which display screen 118/218 is a touch-
screen, the virtual environment selection input may include
applying a touch or gesture to display screen 118/218. In
some implementation, display screen 118/218 may provide
a search field into which user 120 may enter a keyword for
identifying one of virtual environments 236a or 2365. Alter-
natively, in some implementations, the selection input
received in action 345 may be a voice input to microphone
(s) 208 that describes, names, or otherwise identifies one of
virtual environments 2364 or 2365. Optional action 345 may
be performed by object animation software code 212,
executed by hardware processor 214.

[0050] Flowchart 340 continues with receiving an anima-
tion input (action 346). The animation input used in part to
identify the movement of selected object 122 may take any
of several forms. For example, in some implementations,
such an animation input may include a voice input to
microphone(s) 208 of portable device 110/210. Alterna-
tively, the animation input may include a gesture applied to
display screen 118/218 of portable device 110/210. Never-
theless, action 347 below will be described in detail by
reference to implementations in which the animation input
includes motion of portable device 110/210 detected by
motion sensor(s) 204 of portable device 110/210.

[0051] Flowchart 340 continues with identifying, based on
selected object 122, the animation input received in action
346, and in some implementations based also on virtual
environment 236a or 2365 selected as a result of optional
action 345, a movement for animating selected object 122
(action 347). The movement for animating selected object
122 may be one of walking, running, crouching, or jumping,
for example, and may be identified in action 347 by object
animation software code 212, executed by hardware proces-
sor 214.

[0052] In the specific implementation in which the anima-
tion input includes motion of portable device 110/210
detected by motion sensor(s) 204, user 120 manipulates
portable device 110/210 capable of tracking its orientation,
position, and movement in space. As discussed above, user
120 can point camera(s) 206 of portable device 110/210
towards object 122 and select object 122 by providing an
input to portable device 110/210. Moreover, distance 124
separating selected object 122 from portable device 110/210

Jan. 14, 2021

that is determined in action 344 may be maintained as a fixed
distance when animation 132 of selected object 122 is
generated.

[0053] When used in this way, the distance and relative
rotation with respect to portable device 110/210 of the
virtual character corresponding to selected object 122 in
animation 132 is maintained, giving this control scheme a
very responsive and direct feel. For example, motion sensor
(s) 204 may be used to identify the orientation of portable
device 110/210 when distance 124 is determined in action
344. Motion sensor(s) 204 may be used thereafter to deter-
mine a later orientation of portable device 110/210, and a
comparison of that later orientation with the orientation of
portable device during action 344 may be used to maintain
the relative rotation.

[0054] In some such use cases, the fixed distance con-
straint can be relaxed, especially to handle collisions. For
example, if animation 132 of selected object 122 would
appear to push the virtual character corresponding to
selected object 122 into a floor or wall, distance 124 may be
shortened appropriately in order to prevent the virtual char-
acter depicting selected object 122 from appearing to phase
through another solid object.

[0055] As noted above, identification of a movement for
animating selected object 122 in action 347 may be per-
formed by object animation software code 212, executed by
hardware processor 214. It is also noted that although the
following discussion refers to selected object 122 as an
inanimate doll representing a humanoid, in other implemen-
tations, selected object 122 may be a quadruped, and in some
use cases may be a living being, such as a household pet, or
a personal friend serving as the subject of a virtual puppe-
teering experience.

[0056] With respect to action 347 in implementations in
which the animation input is motion of portable device
110/210 by user 122, and distance 124 is maintained as a
substantially fixed distance in animation 132 of selected
object 122, object animation software code 212 may utilize
a state machine to determine how the virtual character
corresponding to selected object 122 is animated so as to
react in real-time to the movements of user 120. For
example, in one state the virtual character stands on the
ground but as soon as user 120 flicks portable device
110/210 up, the virtual character transitions to the jump
state. Each state can be defined by its internal logic, root
position, the configuration of the character movement, and
the inverse kinematic (IK) state. The context of the state
machine can include real-world environment 101 surround-
ing selected object 122, as well as the virtual environment
optionally selected in action 345, as well as the animation
input, i.e., motion of portable device 110/210. One state is
the active state and at every time-step its logic updates the
state of animation 132 based on the context. Events can be
defined that trigger a state change, resulting in another state
becoming the active state and changing the behavior of the
virtual character.

[0057] Maintaining distance 124 as a fixed distance during
animation 132 does not restrict the manipulation of the
virtual character corresponding to selected object 122 by
user 120. As a result, portable device 110/210 must be
prepared for any input, even when no predefined movement
by the virtual character is appropriate. The present solution
handles such unexpected inputs by having a default state that
is activated when such a situation arises. One suitable

US 2021/0008461 Al

default state would be to turn the virtual character into a
ragdoll. Such a default state could be used when a virtual
character having no jump momentum is held in the air:
instead of having a character with an inappropriate jumping
animation in the air, user 122 would instead be holding a
virtually simulated ragdoll.

[0058] Unpredictable user inputs also mean that anima-
tions with a high degree of interaction with real-world
environment 101 and/or virtual environment 236a or 2365
have to be adapted (e.g., the virtual character picks up an
object from different directions and poses). In these cases,
inverse kinematics can be used to adapt movements by the
virtual character to the given situation. For example, when
the virtual character picks up an object, its hands are moved
close to the object independently of the underlying identified
movement for animating the virtual object.

[0059] One challenge when animating selected object 122
as described in the foregoing is that the input motion of
portable device 110/210 is typically very continuous. Con-
sequently, and in contrast to interfaces that respond to
discrete user inputs, such as button pushes, the present
approach cannot simply play a limited set of preexisting
animation clips. For example, if animations are defined for
walking and running states, it may be unclear which move-
ment to identify for animating selected object 122 when the
manipulation speed is between the two. The present solution
addresses this challenge through use of animation blending.
Various algorithms for blending animation clips are known
in the art, for example, linear blending algorithms and cubic
blending algorithms. Because the present solution is agnos-
tic to any particular algorithm, that is to say the present
method can be used with any of them, the blending algo-
rithm implemented herein is treated as a black box.

[0060] Object animation software code 212 is configured
to use a small set of predetermined animation movements
and postures, such as less than ten animation movements and
postures, for example, that can be used to blend together new
ones. Each predetermined animation movement or posture
can have N blend parameters p,/=[0,1], that are used to place
it in an N-dimensional blend space, for example, such a
point may be denoted as p,~(p,; - . . p,). Given a new point
p in that space, the blending algorithm returns a new
animation movement that is a combination of the neighbor-
ing ones.

[0061] FIG. 4 shows exemplary blend-space graph 400 for
use in identifying an animation movement in action 347,
according to one implementation. As shown in FIG. 4,
blend-space graph 400 includes five predetermined anima-
tion movements and postures: standing 450, walking 452,
running 454, crouching 456, and walking while crouching
458. Each predetermined animation movement has two
blend parameters, one corresponding to movement velocity
and the other corresponding to posture height. The challenge
is to map the values from the animation input, i.e., the
position, orientation and motion of portable device 110/210
to the blending parameters p(u,). According to the example
shown in FIG. 4, movement 460 identified in action 347 is
a blend of predetermined animation movements having
blend parameters p,.,.;,,=0.2 and py,;.;,~0.73.

[0062] Inimplementations in which the animation input is
motion of portable device 110/210 by user 122, the velocity
of the motion determines the movement (e.g., walking vs
running) and user 122 needs to maintain the motion in order
for the virtual character to keep performing the movement.

Jan. 14, 2021

That is to say, in those implementations, the virtual character
moves only if portable device 110/210 moves as well.
Moreover, increasing the speed of the motion of portable
device 110/210 can cause the virtual character to transition
from a walking movement to a running movement, for
example, while slowing the speed of motion of portable
device 110/210 may have the opposite effect. Voice inputs
such as “fast.” “slow,” “high step.” and “low step,” for
example, can also be used to fine tune the movement
produced by the animation input received in action 346.

[0063] As noted, voice and touchscreen inputs can provide
secondary information to indicate how to perform a particu-
lar movement. For example, a motion input consistent with
a walking movement accompanied by a voice command “be
sad” may cause the virtual character corresponding to object
122 to walk with a sad expression, or with its head bowed.
It is noted that in implementations in which the animation
input is motion of portable device 110/210 by user 122,
touchscreen inputs and/or voice inputs do not replace motion
of portable device 110/210 but augments it. For example, in
the case of movement of the legs of the virtual character,
user 122 could be moving portable device 110/210 so that
that the virtual character walks or run, and may concurrently
slide their finger up on a touchscreen or say “high step” so
that the virtual character performs the walking or running
movement while raising its legs higher. It is further noted
that voice and touchscreen input actions can either be
associated to a global change in the animation (e.g., being
sad could mean that all movements will be performed with
the head bowed or with a different facial expression) or be
associated with a totally different movement.

[0064] Most mappings are linear, which makes the com-
putation of p(u,) straightforward. For example, the height
Uy, OF portable device 110/210 can be mapped linearly to
the crouching height: p(W,,,0,)=(Ws0s0n,~2)* 1/(b-2),
clamped to [0,1]. However, other mappings are non-linear,
in particular the velocity u,,,,,.,, of portable device 110/210.
This is especially important because an inexact mapping
would identify the wrong animation movement and result in
foot sliding artifacts. This additional challenge is addressed
by creating a lookup table and making it continuous using
inverse distance weighting.

[0065] Such a lookup table can be filled by choosing a set
of probe points p', in the blend space with a high enough
density (e.g., in a grid). The user properties u', of these probe
points can be measured automatically by blending the cor-
responding animation movement and then measuring its
properties, for example the movement velocity. With that,
when user 120 provides new input values u, the correspond-
ing blend parameters can be computed using inverse dis-
tance weighting:

Zew (wpD (Equation 1)
Zwi ()

pi@ ,if u(u, u, @) =0, for some i

{
| JAf du, uy) £ 0 for all i
p) =14
{
with

1 (Equation 2)
dlu, D YD

@ indicates text missing or illegible when filed

wy(u) =

US 2021/0008461 Al

where d is the Euclidean distance between two points and
qER, is the power parameter. It is noted that in the specific
example use case described above, q=7. It is further noted
that a high q leads to a “sharper” resolution but requires a
higher density of probe points to prevent jerky transitions.
FIG. 5 shows exemplary lookup table 500 obtained from
example blend-space graph 400, in FIG. 4. The fact that
border 564, defined by all animation movements for which
Pretociry—1s 15 N0t a straight line demonstrates that the map-
ping of the velocity parameter is non-linear in this exem-
plary implementation.

[0066] In some instances, the animation input 566 (u)
provided by user 120 may be outside of the defined area of
possible movements 562. For example, user 120 may move
portable device 110/210 so fast that no movement can be
blended to match that velocity. To address that situation, the
actual user input 566 (u) is projected onto border 564 of the
set of feasible movements, resulting in projected user input
568 (u'). It is noted that in higher dimensions, border 564
would be a multi-dimensional mesh. In the case of move-
ment velocity, the speed of the movement may be increased
by a factor

Uyelocity

1
Uselocity

in order to achieve motion with the desired velocity.
[0067] Flowchart 340 continues with generating anima-
tion 132/232 of selected object 122 using the determined
distance 124, the movement identified in action 347, and in
some implementations also using virtual environment 236a
or 236b selected as a result of optional action 345 (action
348). Animation 132/232 may be generated by object ani-
mation software code 212, executed by hardware processor
214, as described in greater detail below.

[0068] In one implementation, animation 132/232 of
selected object 122 may be generated based on seven basic
movements or postures including standing idly, walking,
running, idly crouching, walking crouched, get-up, and
mid-jump. Animation 132/232 of selected object 122 may be
generated through blending of those movements, the default
ragdoll state, and inverse kinematics. Referring to FIG. 6A,
for example, FIG. 6A shows animation 632 in which virtual
character 660 corresponding to selected object 122 is ani-
mated to roll snowball 670q. It is noted that animation 632
corresponds in general to animation 132/232 in FIGS. 1B
and 2. Consequently, animation 632 may share any of the
characteristics attributed to corresponding animation 132/
232 by the present disclosure, and vice versa.

[0069] The rolling of snowball 670a by virtual character
660 is made possible using the crouched posture and placing
the hands of virtual character 660 on the surface of snowball
670a. The animation input provided by user 122 can include
the position, velocity, and orientation of portable device
110/210 in space. Additionally, touchscreen display screen
118/218 can be used as a single button to select virtual object
122 depicted in animation 132/232/632. No other buttons or
inputs may necessarily be required, which advantageously
makes the interface extremely easy to learn. The environ-
ment of the state machine discussed above contains distance
124 and manipulable objects included in image 231.
[0070] It is noted that although the animation input for
making virtual character 660 jump may simply be to lift up

Jan. 14, 2021

portable device 110/210 with a high enough velocity, a
compelling jump animation requires virtual character 660 to
squat before becoming airborne (i.e., the Anticipation prin-
ciple of animation). As a result, in some implementations, a
short delay is enforced between the user movement provid-
ing the animation input and the jump, in order to build that
anticipation. The ensuing jump path can be estimated with a
2-dimensional parabola when looking from the side view. At
each frame the parabola is calculated given the starting
position of the jump (X, y,), the current position (x,.y,) and
the current slope of the jump y',:

y(x) = ax® +bx+c (Equation 3)
where

ue V1% = %0) = yr + Yo

(% — xO)@
b= yr@ (Xg —X,Z) =2x,(yr = Yo)
- (= x%0)?
o= sz(yrQ) Xo + Yo) —xrxo(yr('?) X + 2y:®)+ yr@ Xg
- (= %)?

@ indicates text missing or illegible when filed

[0071] The position of the apex,

(5 3(5)

can be used to animate the virtual character accordingly.
Furthermore, if a jump is considered to be invalid the virtual
character can be placed in the default ragdoll state. A jump
may be considered invalid if: (1) the virtual character rises
again after starting its descent (i.e., there are multiple
apexes), (2) the virtual character turns while in air absent an
input prompting such a turn, or (3) the virtual character stops
or levitates in the air, for example. If no invalidating
circumstance is present, the virtual character returns to the
ground and may absorb the shock of the landing by per-
forming a short crouch. It is noted that although an
unprompted turn while in the air may indicate an invalid
jump, the virtual character can validly rotate while in the air
if prompted to do so. For example the voice input “flip” or
a circular gesture applied as a touchscreen input to display
screen 118/218 while moving portable device 110/210 may
be used to prompt a rotation. In that case, the virtual
character would add a rotation to its movement. For
example, if the motion of the virtual character were to be a
jump prior to the flip prompt, the virtual character might flip
in mid jump. By contrast, if the motion of the virtual
character were to be walking or running prior to the flip
prompt, the virtual character might execute a forward roll
during that motion, which might be a slow roll if walking or
a fast roll if running.

[0072] FIGS. 6A and 6B show snowman building anima-
tion 632. The present virtual puppeteering solution enables
user 120 in FIGS. 1A, 1B, and 1C to animate virtual
character 660 depicting selected object 122 to build snow-
man 672 out of snowballs 670a, 6705, and 670c¢, that can be
rolled to variable diameters (see FIG. 6A). As illustrated in

US 2021/0008461 Al

FIG. 6B, a virtual character corresponding to a virtual
object, such as snowman 672, may then be selected by user
120 to replace virtual character 660 depicting selected object
122 in animation 632. Selection of snowman 672 by user
120 causes snowman 672 to appear to come to life and to be
controlled just like virtual character 660 of object 122.
Consequently, snowman 672 can also crouch, jump and even
build another snowman 674 using snowballs 6704 and 670e,
which can subsequently be selected by user 120 and con-
trolled as described above. Thus, as noted above, an object
animated using the present virtual puppeteering systems and
methods may be a real-world object, such as object 122, or
a virtual object, such as snowman 672 or snowman 674.
[0073] It is noted that snowman building animation 632 is
generated in part from the virtual environment input
received in action 345 identifying the virtual environment as
a field of snow. That optionally selected virtual environment
is yet another input, analogous to voice and touchscreen
gesture, for use in generating the animation of virtual
character 660. If there is no snow, building a snowman is
simply not possible. However, as noted above by reference
to optional action 345, a virtual environment for animation
of virtual character 660 that includes snow may be invoked
in various ways. For example, referring to FIGS. 1A, 1B, 1C
and 2, user 120 may select one of virtual environments 236a
or 2365 from a list of virtual environments or thumbnails
depicting those virtual environments, displayed on display
screen 118/218 of portable device 110/210. In implementa-
tions in which display screen 118/218 is a touchscreen, the
virtual environment selection input may include applying a
touch or gesture to display screen 118/218. In some imple-
mentations, display screen 118/218 may provide a search
field into which user 120 may enter a keyword for identi-
fying one of virtual environments 236a or 2365. Alterna-
tively, in some implementations, the selection input received
in action 345 may be a voice input to microphone(s) 208 that
describes, names, or otherwise identifies one of virtual
environments 236a or 2365.

[0074] Referring once again to FIGS. 6A and 6B, it is
further noted that because snowballs 670a, 6705. 670c,
670d, and 670e¢ making up snowmen 672 and 674 have
variable sizes, the proportions of the snowmen must also be
variable. In some implementations, that snowman propor-
tion variability can be achieved by extending specific bones
of the snowman rig, for example, by adapting the length of
the neck to accommodate for the head size. However, having
an overly elongated bone can result in very stiff movements.
That further problem can be resolved by interpolating the
snowball positions between chest and pelvis with a quadratic
Bezier curve. The control points may be the pelvis position,
the chest position, and the point p, defined as:

(Equation 4)

P petis + (1 = DY popess + D pap
pP1= 5

@ indicates text missing or illegible when filed

where p,,, is the position of the chest when the snowman is
standing upright, and b is a bend factor that may vary
between zero and one.

[0075] Flowchart 340 can conclude with rendering anima-
tion 132/232/632 of selected object 122 (action 349). Ren-
dering of animation 132/232/632 in action 349 may be

Jan. 14, 2021

performed by object animation software code 212, executed
by hardware processor 214, and using one of display screen
118/218, projection device 126/226, or VR viewer 138/238.
That is to say, as shown in FIGS. 1A and 2, in some
implementations, hardware processor 214 of portable device
110/210 may execute object animation software code 212 to
render animation 232 of selected object 122 on display
screen 118/218 of portable device 110/210, which may be an
LCD, light-emitting LED display, or an OLED display, for
example.

[0076] As shown in FIGS. 1B and 2, in some implemen-
tations, virtual puppeteering system 100B includes projec-
tion device 126/226 communicatively coupled to portable
device 110/210. In those implementations, hardware proces-
sor 214 may execute object animation software code 212 to
render animation 132/232 of selected object 122 by project-
ing animation 132/232 onto surface 130 in real-world envi-
ronment 101. As noted above, when implemented as one or
more projectors, projection device 126/226 may include a
stand-alone wide-field projection system, or may be imple-
mented as a fisheye lens projector, or as multiple stitched
projection-mapped video projectors, for example. However,
in other implementations, projection device 126/226 may be
configured to render animation 132 as a 3D animation. For
example, projection device 126/226 may take the form of a
3D projection system, or a 2D display configured to spin so
as to generate an apparently 3D image.

[0077] Alternatively, and as shown in FIGS. 1C and 2, in
some implementations, virtual puppeteering system 100C
includes VR viewer 138/238 communicatively coupled to
portable device 110/210. Moreover, and as noted above, in
some implementations portable device 110/210 and VR
viewer 138/238 may be integrated into a single unit such that
portable device 110/210 is VR viewer 138/238. In all those
implementations, hardware processor 214 may execute
object animation software code 212 to render animation 232
of selected object 122 as a VR animation.

[0078] Thus, the present application discloses virtual pup-
peteering systems and methods that overcome the draw-
backs and deficiencies in the conventional art. According to
the present novel and inventive concepts, the virtual pup-
peteering systems and methods disclosed herein improve on
the state-of-the-art by advantageously providing a novel
interaction experience motivated by the traditional experi-
ence of moving a physical toy. As a portable device that
generates an animation receives an animation input, such as
being moved in physical space or by receiving a voice or
touchscreen input, movements can be transferred directly
and immediately to the virtual character animating a selected
object. Because the virtual character can either be visualized
in the real-world using AR or visualized substantially
entirely in a virtual world using VR, the experience is one of
having direct control over the virtual character. However,
because the character is a virtual depiction of the physical
toy or other object selected by the user, the present virtual
puppeteering solution can advantageously apply sophisti-
cated animations and other logic to enhance the user’s
enjoyment and perception of interactivity.

[0079] From the above description it is manifest that
various techniques can be used for implementing the con-
cepts described in the present application without departing
from the scope of those concepts. Moreover, while the
concepts have been described with specific reference to
certain implementations, a person of ordinary skill in the art

US 2021/0008461 Al

would recognize that changes can be made in form and detail
without departing from the scope of those concepts. As such,
the described implementations are to be considered in all
respects as illustrative and not restrictive. It should also be
understood that the present application is not limited to the
particular implementations described herein, but many rear-
rangements, modifications, and substitutions are possible
without departing from the scope of the present disclosure.
What is claimed is:
1. A virtual puppeteering system comprising:
a portable device including a camera, a display, a hard-
ware processor, and a system memory storing an object
animation software code;
the hardware processor configured to execute the object
animation software code to:
generate, using the camera, an image in response to
receiving an activation input;

display the image on the display;

receive a selection input selecting an object shown in
the image;

determine a distance separating the selected object
from the portable device;

receive an animation input;

identify, based on the selected object and the received
animation input, a movement for animating the
selected object;

generate an animation of the selected object using the
determined distance and the identified movement;
and

render the animation of the selected object.

2. The virtual puppeteering system of claim 1, wherein the
portable device further comprises a motion sensor, and
wherein the animation input comprises a motion of the
portable device detected by the motion sensor.

3. The virtual puppeteering system of claim 1, wherein the
hardware processor is further configured to execute the
object animation software code to maintain the determined
distance separating the selected object from the portable
device as a fixed distance in the animation of the selected
object.

4. The virtual puppeteering system of claim 1, wherein the
portable device further comprises a microphone, and
wherein the animation input comprises a voice input to the
microphone.

5. The virtual puppeteering system of claim 1, wherein the
display comprises a touchscreen of the portable device, and
wherein the animation input comprises one of a touch or a
gesture applied to the touchscreen.

6. The virtual puppeteering system of claim 1, wherein the
hardware processor is further configured to execute the
object animation software code to render the animation of
the selected object on the display of the portable device.

7. The virtual puppeteering system of claim 1, further
comprising a projection device communicatively coupled to
the portable device, and wherein the hardware processor is
further configured to execute the object animation software
code to render the animation of the selected object by
projecting the animation onto a surface in a real-world
environment using the projection device.

8. The virtual puppeteering system of claim 1, wherein the
hardware processor is further configured to execute the
object animation software code to:

receive another selection input selecting a virtual envi-
ronment for the animation of the selected object;

Jan. 14, 2021

identify the movement for animating the selected object
further based on the selected virtual environment; and

generate the animation of the selected object further using
the selected virtual environment.
9. The virtual puppeteering system of claim 1, wherein the
selected object is a real-world object, and wherein the
identified movement for animating the selected object is one
of walking or running.
10. The virtual puppeteering system of claim 1, wherein
the selected object is a real-world object, and wherein the
identified movement for animating the selected object is one
of crouching or jumping.
11. A method for use by a virtual puppeteering system
including a portable device having a camera, a display, a
hardware processor, and a system memory storing an object
animation software code, the method comprising:
generating, using the camera by the object animation
software code executed by the hardware processor, an
image in response to receiving an activation input;

displaying, by the object animation software code
executed by the hardware processor, the image on the
display;

receiving, by the object animation software code executed

by the hardware processor, a selection input selecting
an object shown in the image;
determining, by the object animation software code
executed by the hardware processor, a distance sepa-
rating the selected object from the portable device;

receiving, by the object animation software code executed
by the hardware processor, an animation input;

identifying, by the object animation software code
executed by the hardware processor, and based on the
selected object and the received animation input, a
movement for animating the selected object;

generating, by the object animation software code
executed by the hardware processor, an animation of
the selected object using the determined distance and
the identified movement; and

rendering, by the object animation software code

executed by the hardware processor, the animation of
the selected object.

12. The method of claim 11, wherein the portable device
further comprises a motion sensor, and wherein the anima-
tion input comprises a motion of the portable device
detected by the motion sensor.

13. The method of claim 11, further comprising:

maintaining, by the object animation software code

executed by the hardware processor, the determined
distance separating the selected object from the por-
table device as a fixed distance in the animation of the
selected object.

14. The method of claim 11, wherein the portable device
further comprises a microphone, and wherein the animation
input comprises a voice input to the microphone.

15. The method of claim 11, wherein the display com-
prises a touchscreen of the portable device, and wherein the
animation input comprises one of a touch or a gesture
applied to the touchscreen.

16. The method of claim 11, wherein rendering the
animation of the selected object comprises rendering the
animation on the display.

17. The method of claim 11, further comprising a projec-
tion device communicatively coupled to the portable device,
and wherein rendering the animation of the selected object

US 2021/0008461 Al Jan. 14, 2021
10

comprises projecting the animation onto a surface in a
real-world environment using the projection device.

18. The method of claim 11, further comprising:

receiving, by the object animation software code executed

by the hardware processor, another selection input
selecting a virtual environment for the animation of the
selected object;

wherein identifying the at least one movement for ani-

mating the selected object is based further on the
selected virtual environment; and

wherein generating the animation of the selected object

further uses the selected virtual environment.

19. The method of claim 11, wherein the selected object
is a real-world object, and wherein the identified movement
for animating the selected object is one of walking or
running.

20. The method of claim 11, wherein the selected object
is a real-world object, and wherein the identified movement
for animating the selected object is one of crouching or
jumping.

